Orders #
Defines classes for preorders and partial orders and proves some basic lemmas about them.
A preorder is a reflexive, transitive relation ≤ with a < b defined in the obvious way.
Instances
Alias of not_le_of_lt.
Alias of not_lt_of_le.
@[instance 900]
Equations
- instTransLe_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransLt_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransLtLe_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransLeLt_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransGe_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransGt_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransGtGe_mathlib = { trans := ⋯ }
@[instance 900]
Equations
- instTransGeGt_mathlib = { trans := ⋯ }
< is decidable if ≤ is.
Equations
Instances For
Definition of PartialOrder and lemmas about types with a partial order #
A partial order is a reflexive, transitive, antisymmetric relation ≤.
Instances
Alias of le_antisymm.
Equality is decidable if ≤ is.
Equations
Instances For
theorem
Decidable.lt_or_eq_of_le
{α : Type u_1}
[PartialOrder α]
{a b : α}
[DecidableLE α]
(hab : a ≤ b)
:
theorem
Decidable.eq_or_lt_of_le
{α : Type u_1}
[PartialOrder α]
{a b : α}
[DecidableLE α]
(hab : a ≤ b)
: