Documentation

FraudProof.DataStructures.MTree

@[reducible, inline]
abbrev MTree ( : Type) :
Equations
Instances For
    def comb_MTree { : Type} [m : HashMagma ] :
    MTree MTree MTree
    Equations
    Instances For
      def BTree.hash_BTree {α : Type} [o : Hash α ] [HashMagma ] :
      BTree αMTree
      Equations
      Instances For
        def ABTree.hash_Tree {α : Type} [o : Hash α ] [m : HashMagma ] :
        BTree αABTree α
        Equations
        Instances For
          def ABTree.hash_SubTree {α : Type} [o : Hash α ] [m : HashMagma ] :
          BTree αABTree α ( × )
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            structure MkData ( : Type) :
            • top :
            • left :
            • right :
            Instances For
              def ABTree.merkle_root {α : Type} [o : Hash α ] :
              ABTree α (MkData )
              Equations
              Instances For
                def ABTree.hash_MKSubts {α : Type} [Hash α ] [m : HashMagma ] :
                BTree αABTree α (MkData )
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def hashM {α : Type} {m : TypeType} [Monad m] (hL : αm ) (hC : m ) (t : BTree α) :
                  m (MTree )
                  Equations
                  Instances For
                    inductive SkElem :
                    Instances For
                      Equations
                      def SkElem.destruct {α : Type} (s : SkElem) (l r : α) :
                      α
                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev Skeleton :
                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev ISkeleton (n : ) :
                          Equations
                          Instances For
                            def ABTree.find_left {α β : Type} (is : αBool) :
                            ABTree α βOption (List (SkElem × (α β)))
                            Equations
                            Instances For
                              def ABTree.gen_path_elem_forward {α β γ : Type} {n : } (t : ABTree α β) (ag : αγ) (bg : βγ) (p : Sequence n SkElem) :
                              Option (α × Sequence n (γ × γ))
                              Equations
                              Instances For
                                def op_side { : Type} [mag : HashMagma ] (side : SkElem) (a b : ) :
                                Equations
                                Instances For
                                  theorem opHash_neqRight { : Type} [HashMagma ] [lHStr : SLawFulHash ] {hl hr pl pr : } :
                                  theorem opHash_neqLeft { : Type} [HashMagma ] [lHStr : SLawFulHash ] {hl hr pl pr : } :
                                  def listPathHashes { : Type} [HashMagma ] (h : ) (path : List (SkElem × )) :
                                  Equations
                                  Instances For
                                    def nodeIn { : Type} [BEq ] [HashMagma ] (h : ) (path : List (SkElem × )) (t : MTree ) :
                                    Equations
                                    Instances For
                                      def containCompute {α : Type} [BEq ] [o : Hash α ] [HashMagma ] (v : α) (path : List (SkElem × )) (t : MTree ) :
                                      Equations
                                      Instances For
                                        theorem leftChildContaintionN {α : Type} [BEq ] [LawfulBEq ] [Hash α ] [HashMagma ] (v : α) (h : ) (btR broot : BTree α) :
                                        theorem rightChildContaintionN {α : Type} [BEq ] [LawfulBEq ] [Hash α ] [HashMagma ] (v : α) (h : ) (btL broot : BTree α) :
                                        theorem leafChildContaintionN {α : Type} [BEq ] [LawfulBEq ] [Hash α ] [HashMagma ] (v : α) (broot : BTree α) :